
Financial Services Client
Portfolio valuations and risk web service



Problem
The customer had a SPA website to display a customer’s live positions and valuations as
well as those from the previous business day. All of the data was sourced from a webservice
which exposed the data generated by an application stack responsible for generating the
data.

As the main customer requirement was to show live, “ticking” risk, each instance of the
service would be running on its own continuous loop of generating valuations and then
repeating as soon as possible with any updated market and trade data. Therefore it was
impossible to guarantee that any 2 instances would provide exactly the same live numbers.

Because customers were relying on this data to be able to make trading decisions, it was
vital that any changes to their numbers were well understood (frequently there were
intentional changes to reflect better modelling choices etc.) as any unexplained differences
would cause consternation with customers, especially when they discovered the differences
rather than being forewarned.

Because of all of these factors, every software release was time consuming and
cumbersome which was slowing down the development team. There was a desire to be able
to release more quickly whilst retaining the quality standards that the consumers had come
to expect.

This pre-release testing was performed manually, with a human tester checking each of the
portfolios for any impact by having 2 instances of the website, production and the candidate,
on screen and comparing the numbers. This was time consuming, prone to operational risk
and wasn’t scalable.

In order to complete the process within the available time, not every portfolio could be
checked and therefore the developers would warn the testers where they expected there to
be impacts and this is where the testing was targeted. This meant that where changes
occurred unexpectedly, they were frequently overlooked until discovered by the end user,
triggering a rollback of the release until the investigations could be completed. This didn’t
mean that the change was wrong and that the updated value was wrong, merely that there
wasn’t enough time to confirm that to the end client prior to this rollback decision being
taken.

Conical case study - Portfolio valuation web service
V1 (May 2022)



Solution
The desires here were:

● Increase the number of portfolios which could be tested
● Increase the range of functionality which could be covered
● Use the manual testing resources more effectively to test

As it was very easy to spin up new instances of the main stack / web service, we created a
new tool which could do the following:

1. Call the webservice and ask for the complete list of portfolios1

2. Iterate over the list of portfolios and, per portfolio:
a. Call the live production instance for the EOD valuations for the previous

business day
b. Call the candidate instance for the same criteria
c. Process the returned results2 to generate flattened representations of the

per-trade results using the BorsukSoftware.ObjectFlattener framework.
d. Compare the per trade results using the BorsukSoftware.ObjectComparison

framework.
e. Repeat the previous 2 steps for the summary values returned
f. Output a payload file containing both a summary of the differences found3 and

the drill down payload4.
3. Iterate through all of the payload files to generate a single differences file for all

portfolios to help with any required analysis5.

The CI process was then updated so that the new tool was called6 on the newly spun up
candidate instance and the test results were uploaded to Conical. Where no changes were
detected, the pipeline stayed green. Where changes were detected, the pipeline7 went red
which flagged up the need for the developers / testers to investigate.

This additional pipeline could be run both on demand during the day for developers to
double check the impact of any changes which had occurred as well as overnight so that the
testers could have the results available to them in the morning.

7 This was an additional, separate to the code compilation pipeline so that all of the artefacts etc.
weren’t lost

6 The tool could also be run on local instances of the stack so that developers could run the same
analysis work (whilst going for a coffee etc.) to be certain of the impact that their change would have
on the actual customers’ portfolios.

5 Typically, in the case where a change was made and it was expected that it would have an impact
on every portfolio, e.g. a new value was added or one was removed, then every portfolio will go red.
In order to avoid the case where this hid other, unexpected changes, the testers could look at this
macroscopic file and see which keys were different and then drill in on any which were unexpected.

4 So for each trade with a difference, the trade identification information was provided alongside the
values which were different etc.

3 E.g. For the trade level figures, 546 matched, 3 differences, 2 additional, 1 missing etc. A similar
summary could be provided for summaries.

2 The customer’s result structure was based on ‘per trade’ results as well as group level summaries.
1 This was security controlled etc. Done by the appropriately permissioned user on their web service.

Conical case study - Portfolio valuation web service
V1 (May 2022)

https://www.nuget.org/packages?q=BorsukSoftware.ObjectFlattener
https://www.nuget.org/packages?q=BorsukSoftware.ObjectComparison


The net effects of these changes were:

Improved Developer confidence
Because developers could see the impact, either by running locally prior to check-in or on
the CI server, that their changes would have on the end customers’ numbers, they were able
to reduce the length of the development-validation cycle to a matter of minutes compared to
days beforehand.

Better use of manual testing resources
Because the testing process was no longer as manual as possible, and the testers then
subsequently knew where they should be investigating and where they didn’t need to
investigate, they had more time to use their analysis skills to investigate why there were
differences rather than simply identifying that there were differences.

They were then able to get in touch with any impacted customers ahead of time to work with
them / inform them etc. so that there were fewer surprises.

Fewer rollbacks
Because the developers / testers were then able to see the impact ahead of time,
developers and testers knew what the impact was going to be and therefore any decision
about whether to not release a particular change could be made as part of the normal
release decision rather than there needing to be a “panic induced” rollback after release prior
to any investigation having been completed.

This meant that the success rate of releases8 went up to something approaching 100%.

Faster release cycles
Because of all of the above, the length of time it took to be able to perform a release went
down from being measured in days, to being measured in a low number of hours9. This
allowed the release process to be moved from weekly with a high chance of rollback to daily
with a virtually guaranteed chance of success.

This allowed the customer to be much more responsive to their customers’ needs.

9 There was still some manual testing required of other components etc. so it wasn’t 100% automated
8 The number of releases which didn’t need to be rollbacked

Conical case study - Portfolio valuation web service
V1 (May 2022)



Future steps
The testing could have been taken further by looking to cover more of the comparison of the
“live” numbers. The problem here is that it would have potentially thrown up a large volume
of false negatives due to differences10 in trade populations11 / market data12, these would not
have been insurmountable but the primary value had already been achieved.

Summary
By reducing the amount of time taken to manually verify that numbers hadn’t changed, the
client was able to improve the quality of testing performed in a dramatically reduced time
period allowing them to move from an effective release rate of fortnightly13 to daily releases
with very infrequent rollbacks.

All of this was done without needing to make any changes to the web service being tested.

13 Assuming half of weekly releases needed to be rolled back for whatever reason, then this leads to a
developer being able to realistically expect their software to be available to clients after a fortnight.

12 These could have been handled by adding per-value tolerances etc.

11 This wouldn’t have actually been a major problem but would have potentially added to noise unless
these differences could be masked, but that would have been at the cost of not testing that
functionality through the integration tests. The trade functionality itself was relatively easy to cover
with unit tests at the service level so it might not have been a major issue, but it would have required
careful consideration

10 The application being tested operated on a continuous loop so there was no guarantee that the
timestamp for the inputs to any 2 instances would have been the same.

Conical case study - Portfolio valuation web service
V1 (May 2022)


